Fake Lepton Estimation in ttH Multi-Lepton Analysis

Zhi Zheng (University of Michigan)

2018 US LHC Users Association Meeting Oct. 26

Post-Higgs discovery:

- Measuring Higgs Yukawa couplings at the LHC
 - Top is heaviest fermion in the SMightarrowlargest Yukawa coupling $\lambda_t pprox 1$
- $t\bar{t}H$ production: best direct way to measure top quark Yukawa coupling
 - $t\bar{t}H$ production cross section at 13TeV: $0.507pb_{-9.2\%}^{+5.8\%}$ (QCD scales) $\pm 3.6\%$ (PDF, α_s)
 - Only ~1% of the total Higgs cross-section

H

Post-Higgs discovery:

- Measuring Higgs Yukawa couplings at the LHC
 - Top is heaviest fermion in the SM \rightarrow largest Yukawa coupling $\lambda_t \approx 1$

 10^{-2}

- $t\bar{t}H$ production: best direct way to measure top quark Yukawa coupling
 - $t\bar{t}H$ production cross section at 13TeV: $0.507pb_{-9.2\%}^{+5.8\%}$ (QCD scales) $\pm 3.6\%$ (PDF, α_s)
 - Only ~1% of the total Higgs cross-section

√s [TeV]

$t\bar{t}H$ production

Large Branch Ratío

Cleaner Signal Smaller Background

t	2.9	T	7			
		=		"	-	
		7	5	V.	 w	

ttH Multi-lepton

 $ttH(\gamma\gamma)$

$t\bar{t}H$ production

MICHIGAN LLVLL

Cleaner Signal Smaller Background

 $ttH(\gamma\gamma)$

Large Branch Ratío

ttH(bb)

ttH Multi-lepton

- High multiplicity final state: leptons, jets, bjets
 - Have 7 categories based on number of lepton and number of τ_{had}
- Light-lepton channels are more sensitive to $H \rightarrow WW$ decays
- au_{had} channels are more sensitive to H ightarrow au au

$t ar{t} H$ Multilepton Same Sign Dilepton Region

- Main background sources:
 - Standard model processes with all prompt lepton
 - $t\bar{t}W$, $t\bar{t}Z$ other rare SM processes
 - Electron charge mis-identification
 - Events with fake/non-prompt light leptons
 - Semileptonic b-decay, photon conversion

Work in process

Assumption:

Rely on Monte Carlo (MC) to describe desired observables (jet multiplicity ect.)

Build templates based on the truth classification of events containing a non-prompt lepton, a free floating normalization factor (NF) is assigned to each of them

Shape get from MC

Overall normalization same in control regions(CRs) and signal regions(SRs)

Free parameters (NFs)

Assumption:

- Rely on Monte Carlo (MC) to describe desired observables (jet multiplicity ect.)
- Build templates based on the truth classification of events containing a nonprompt lepton, a free floating normalization factor (NF) is assigned to each of them
- Overall normalization same in control regions(CRs) and signal regions(SRs)

Assumption:

- Rely on Monte Carlo (MC) to describe desired observables (jet multiplicity ect.)
- Build templates based on the truth classification of events containing a nonprompt lepton, a free floating normalization factor (NF) is assigned to each of them

Shape get from MC

 Overall normalization same in control regions(CRs) and signal regions(SRs)

NF Get from CRs

CRS

Challenge:

- Very complex fake compositions and limited MC stats.
 - Adding $N_{iets} \in [2,3]$ as fake control region
 - CRs chose based on MC stats.
- Large ttW contribution in the fake lepton enriched region and ttH enriched region
 - Free float ttW normalization
 - Build ttW enriched region in High NJ regions
- High correlations between those NFs
 - Variables are carefully chose to decorrelate NFs

Challenge:

- Very complex fake compositions and limited MC stats.
 - Adding $N_{iets} \in [2,3]$ as fake control region
 - CRs chose based on MC stats.
- Large ttW contribution in the fake lepton enriched region and ttH enriched region
 - Free float ttW normalization
 - Build ttW enriched region in High NJ regions Can measure ttW as well
- High correlations between those NFs
 - Variables are carefully chose to decorrelate NFs

Apply NFs to validation

regions (Regions not put in the fit)

Input Bins:

Validation: Good Agreement

Conclusion and Future Plan

- We study Higgs top yukawa coupling through $t\bar{t}H$ multilepton channel
- We find a good way to estimate non-prompt/fake lepton background
- As we continue to explore this Higgs decay mode and production mode:
 - Need understand different sources of fake leptons
 - Need better understanding of ttW process

Thank you ©

